
Dependable Software

Teaching Principles of Dependable Distributed
Software

Zoltán Horváth
hz@inf.elte.hu

Faculty of Informatics, Eötvös Loránd University, Budapest

14th Workshop on Software Engineering Education and Reverse
Engineering

Sinaia, Aug 26, 2014

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Software – what our everyday life is depending on

communication: phone, e-mail, social
media
navigation
home banking
healthcare administration, medical
devices
car – in-vechile software: diagnostic,
safety, driver assistance
aircraft – autopilot control system
("Who’s really flying the plane?")
nuclear power plant control system
safety software

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Infamous software bugs

The Mars Climate Orbiter doesn’t orbit (1998, metric system,
$327.6 million)

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Call waiting ... and waiting ... and waiting (On Jan. 15, 1990,
around 60,000 AT&T custumers, congestion lead to cascade
reset of 114 switches)
Therac-25 Medical Accelerator disaster (1985, race condition,
two modes)
Soviet early-warning system (Sep. 23, 1983, Petrov)

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Nuclear Power Plant shutdown (June 5, 2008, USA, software
update in a distributed system)

Ford in-vechile software failiure - hw. reset at Körösfő (2014)
Samsung mobile network connection error (2014, flight mode
off and on)

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Correctness of Distributed programs

a
0

0

0

1

m

1

.

.

1
1

m
..

interleaving, branching time semantics of distributed and
parallel programs
testing of properties, reachable states
specification of the problem to solve
static verification, analysis, calculation of reachable states

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Always true is not always invariant

P invariant – P holds initialy and P is preserved (also in
unreachable states)
P2 always true – P2 holds in all reachable states

Q

P2

P

Only invariants do compose!
Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Motivation for using formal methods:
- safety critical applications
- safe application of software components
- primary goal: sound concepts about distributed and parallel
programs

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

A formal model for precise semantics

We need a formal model, which is appropriate for specification of
problems and developing the solutions of problems in case of
parallel and distributed systems.
The introduced model

is an extension of a relational model of nondeterministic
sequential programs,
provides tools for stepwise refinement of problems, in a
functional approach,
uses the concept of iterative abstract program of UNITY,
the concept of solution is based on the comparison of the
problem as a relation and the behaviour relation of the
program.

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Example problem: the dining philosophers

States: thinking:t, forks in hands:f, eating:e, at home:h,

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Some requirements (problem specification): ∀i :
unless: f (i).t B f (i).f ∨ f (i).h
unless: f (i).f B f (i).e
ensures: f (i).e 7→ f (i).t
inevitable leads-to: f (i).t ↪→ f (i).h
invariant: (f (i).e → (¬f (i + 1).e ∧ f (i − 1).e)) ∈ inv
fixed point: FP⇒ f (i).h
termination: ∀i : f (i).t ∈ TERM

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Example for abstract program

S = (SKIP,

{ �
i∈[1..n−1]a(i), a(i + 1) := a(i + 1), a(i), if a(i) > a(i + 1)})

Abstract execution model: No control flow, free processors select
atomic assignments asynchronously
Program: scheduling, processes, location, communication
infrastructure, language
Example: C++/PVM PC-cluster (Parallel Virtual Machine) /
Erlang
Solution: Specification requirements are satisfied by program
properties (synthsis and formal verification)

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Characteristics of the formal model

The notion of the state space makes it possible to define the
semantical meaning of a problem independently of any
program (functional approach).
The generalized concept of a problem is applicable for cases in
which termination is not required but the behaviour of the
specified system is restricted by safety and progress properties.
The solution of a problem may be a sequential program, a
parallel one, or even a program built up from both sequential
and parallel components.
synthesis of a solution for asynchronous operations (reduce),
parallel elemenwise processing (map), solutions based on
process networks, pipeline (function composition)

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Institute

Eötvöós Loránd University of Sciences, cca. 30 000 stutents,
leading research university of Hungary, 8 facultues
Faculty of Informatics, cca. 3000 students in CS, in teacher of
infromatics, in geoinformatics. Computer Scince program since
1972,
applications: 40% of the annual budget, leader of EIT ICT
Labs node, double degree joinr European masters, strong
industrial (joint R&D Labs) and international partnership (e.g.
CEEPUS network with Novi Sad, Maribor, Cluj, Ljubljana,
Plovdiv)
Computer Science: 550 + 120 new bachelor students (three
specializations) selected from 1200+ applicants, 120+ new
master students per year (three specializations), 20+ new PhD
students per year, 60+ international students,

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Curricula

48-60 ECTS mathematics in BSc curricula (depending on
specialization item strong specialization in Software
Technology (formal model for sequential programming (15
ECTS), 3 semesters of Programming languages (15 ECTS):
C++, Ada, functional programming, Software engineering,
Object oriented programming, etc.),
Software Technology Lab: R&D projects are part of master
program (16+20 ECTS), 6 projects with cca. 70 master
students in teams,
design of parallel and distributed software both at bacshelor
and at master level: theory, practice, programming
assignments, computer lab tests, oral exams.

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

Dependable Software

Parallelism and Functional Programming

Sparkle-T - proof tool for temporal properties (e.g. invariants)
of Clean programs - with Máté Tejfel and Tamás Kozsik
DClean - a coordination language for type safe distributed
cooperation of Clean programs - with Viktória Zsók, Zoltán
Hernyák
Static analysis - to support code comprehension at industrial
level in Erlang - with Melinda Tóth, István Bozó and others
Paraphrase - property preserving transformations of Erlang
programs to enable parallel multicore execution - with Tamás
Kozsik, Melinda Tóth, István Bozó, Judit Kőszegi, Dániel
Horpácsi, Viktória Fördős and others
DSL - functional programming for CPS - Rea language (based
on Erlang and on Sacla)

Zoltán Horváth, hz@inf.elte.hu Teaching Principles of Dependable Distributed Software

	Dependable Software

